Содержание
Основную часть сведений автор кропотливо собирал, путешествуя по разным странам как купец, кое-что почерпнул из трудов Евклида (а по сути – из наследия античных математиков). Особую ценность представляло подробное изложение малоизвестной тогда в Европе индусской (десятичной) системы счисления и новых методов вычисления, позволявших заметно упростить всевозможные расчеты и успешно решать большой круг задач. На протяжении нескольких столетий по труду Фибоначчи ученые знакомились с двумя важнейшими разделами математики – арифметикой и алгеброй и черпали из него задачи и оригинальные методы решения, благодаря чему уже в XV–XVI вв.
Надо сказать, отдельные случаи использования этой системы встречались и ранее. С Востока ее привозили паломники, ученые, купцы, посланники и военные. Наиболее древний европейский манускрипт, в котором упоминаются придуманные индусами цифры, относится еще к концу X в. Однако десятичная система счисления очень медленно проникала в западные страны и получила там широкое распространение лишь в эпоху Возрождения. Развитие математики в Средневековой Европе сильно сдерживалось несовершенством записи чисел.
Такое число подтверждений можно считать выражением не столько тенденции, сколько закономерности. Наиболее обширное исследование проявлений золотого сечения в музыке было предпринято искусствоведом Л.Сабанеевым. По его мнению, временное протяжение музыкального произведения делится «некоторыми вехами», которые выделяются при восприятии музыки и облегчают созерцание формы целого. Все эти музыкальные вехи делят целое на части, как правило, по закону золотого сечения.
Cпираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. Cовместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения.
Золотое сечение или отношение – математическая пропорция, которая проявляется повсеместно в природе. Эта пропорция разделяет отрезок на две неравные части таким образом, что отношение всего отрезка к большей части равно отношению большей части к меньшей. Если придать всему данному отрезку численное значение 1, золотое сечение составляет 0,61803. В 1200 году вернулся в Пизу и принялся за написание своего первого труда «Книги абака». В то время в Европе о позиционной системе счисления и арабских цифрах знали очень немногие.
N-генерированная последовательность Фибоначчи[править | править код]
Когда соотношение 1.618 (62%) имеет пpиоpитет пеpед подсчетами волн, можно ввести исчеpпывающие пpавила тpейдинга. Один из простейших способов применения чисел Фибоначчи на практике – определение отрезков времени, через которое произойдет то или иное событие, например, изменение тренда. Аналитик отсчитывает определенное количество фибоначчиевских дней или недель (13, 21, 34, 55 и т.д.) от предыдущего сходного события. После ряда весьма успешных предсказаний Эллиот опубликовал в 1939 году серию статей в журнале Financial World Magazine. В них впервые была представлена его точка зрения, что движения индекса Доу-Джонса подчиняются определенным ритмам.
Эти сведения дают основание полагать о высоком развитии в те времена знаний в области математики и астрологии. В строгом соответствии с числом 1.618 возведено это величайшее творение не только рук человека, но и его разума. Сами внутренние и внешние пропорции пирамиды, соблюдённые в строгом соответствии с законом Золотого сечения являются посланием нам, потомкам, из глубины веков величайшего знания. Пунктирные линии, которые сами находятся в золотом соотношении одна к другой, рассекают прямоугольники по диагонали и точно обозначают теоретический центр скручивающихся квадратов. Приблизительно из центральной точки мы можем начертить спираль, как показано на рис.3-7,соединяя точки пересечения каждого скручивающегося квадрата в порядке возрастания размера. Так как квадраты скручиваются внутрь и наружу, их точки соединения выписывают Золотую спираль.
Расширение на вещественные и комплексные числа[править | править код]
Для построения Золотой спирали может применяться такой же процесс, но с использованием скручивающихся треугольников. Фактически лишь спустя три столетия после выхода в свет книги «Liber abaci» стало заметно ее влияние на работы других авторов. Перед нами хорошо известная, встречающаяся у разных народов задача-шутка, как ее часто называют историки математики, полагая, что в былые времена она была всего лишь нехитрой забавой для учеников. А ведь эта восходящая еще к древним египтянам задача, вернее ее решение, служит прекрасной наглядной иллюстрацией построения геометрической прогрессии и нахождения суммы первых n ее членов по известному первому члену и знаменателю. И именно в таком качестве ее вполне можно использовать в обучении детей математике. Заметим, что Фибоначчи рассматривал свою задачу для взрослой пары кроликов (на это указывают слова «рождаются кролики со второго месяца»).
Здесь каждое число, начиная со второго, показывают, сколько всего пар кроликов будет насчитываться к началу очередного месяца. Выбираем точку (или точки) прошлых экстремумов и строим вертикальную линию из вершины второго из них, а горизонтальную – из вершины первого. Получившийся таким образом вертикальный отрезок делим на соответствующие фибоначчиевским коэффициентам части. После этого рисуем лучи, исходящие из первой точки и проходящие через избранные только что. Многие важные задачи впервые известны именно из книги Леонардо; однако даже при изложении классических задач он внёс много нового.
Зато трактат https://goforex.info/ приобщил к достижениям индийских и арабских математиков европейских ученых и оказал существенное влияние на дальнейшее развитие алгебры и теории чисел. Возможно, что спираль Фибоначчи может играть решающую роль и в формировании закономерности ограниченности и замкнутости иерархических пространств. Действительно, представим, что на каком-то этапе эволюции спираль Фибоначчи достигла совершенства (она стала неотличима от спирали золотого сечения) и по этой причине частица должна трансформироваться в следующую «категорию». Как отмечают исследователи, книга «Liber abaci» не просто выделяется, а резко возвышается над средневековой литературой по арифметике и алгебре.
Задача о размножении кроликов[править | править код]
Однако есть мнение о том, что биография Фибоначчи закончилась предположительно в 1228 году, когда он участвовал в крестовом походе под управлением императора Фридриха Гогенштауфена. К этому времени относится его работа «Книга квадратов», написанная в 1225 году. Книга посвящена диофантовым уравнениям второй степени и ставит Фибоначчи в один ряд с такими учёными, развивающими теорию чисел, как Диофант и Ферма. Единственное упоминание о Фибоначчи после 1228 года относится к 1240 году, когда ему в Пизанской республике была назначена пенсия за заслуги перед городом. Император Фридрих II любил окружать себя учеными, законниками, математиками, астрологами и прочими учеными мужами, принадлежавшими к разным культурам и странам. В 1224 году он основал Университет в Неаполе, где учились будущие нотариусы, адвокаты, судьи и чиновники королевской канцелярии.
Современными примерами применения золотого сечения может служить мозаика Пенроуза и пропорции государственного флага Того. Существуют колебательные системы, физические характеристики которых (отношения частот, амплитуд и др.) пропорциональны золотому сечению. Самый простой пример — система из двух шариков, соединённых последовательно пружинами одинаковой жёсткости (см. рисунок).. Более того, это точка будет лежать на пересечении диагоналей первого и второго прямоугольников. В процентном округлённом значении золотое сечение — это деление величины в отношении 62 % и 38 %.
Из текста этого примечания следует, что Ом не придумал этот термин сам, хотя некоторые авторы утверждают обратное. Тем не менее, исходя из того, что в первом издании своей книги Ом уже не употреблял этот термин, Роджер Герц-Фишлер делает вывод о том, что этот термин, возможно, появился в первой четверти XIX века. Марио Ливио считает, что он получил популярность в устной традиции около 1830 года. В любом случае именно после Ома термин стал распространён в немецкой математической литературе. Данная статья описывает различные расширения и обобщения чисел Фибоначчи.
- Позже Фибоначчи много путешествовал по Востоку, совмещая математические занятия с торговлей.
- Слово Fibonacci— сокращение от двух слов «filius Bonacci», появившихся на обложке «Книги абака»; они могли означать либо «сын Боначчо», либо, если интерпретировать слово Боначчи как фамилию, «сын Боначчи».
- Первое известное нам упоминание «Леонардо Фибоначчи» содержится в записях нотариуса Священной Римской империи Перизоло за 1506 год.
- В век Фибоначчи возрождение было еще далеко, однако история даровала Италии краткий промежуток времени, который вполне можно было назвать репетицией надвигающейся эпохи Ренессанса.
- Он или она по-прежнему владеют идеями и навыками, но впервые смогут использовать компьютерные технологии, чтобы совместить эти идеи и навыки в мощных торговых стратегиях.
Священный холм и храм Божественной Афины, Великолепный Парфенон, Похоронив забытые руины, К богам Олимпа устремлен. Парфенон отличается удивительной величественностью и глубокой человечностью архитектурных и скульптурных образов и главной причиной красоты Парфенона является исключительная соразмерность его частей, основанная на золотом сечении. Архитекторы понимали, что при зрительном восприятии прямоугольник, отношение сторон которого выбрано по “золотому сечению”, вызывает ощущение гармонии. Таким образом, суммарной последовательностью Фибоначчи легко можно трактовать закономерность проявлений Золотых чисел, встречаемых в природе. Эти законы действуют в независимости от нашего знания, от чьего-то желания принимать или не принимать их. Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно.
Расширение на отрицательные числа[править
После выхода из прямоугольника построения линий Фибоначчи на основе бычьего тренда можно заметить, что курс в последующем двигался в рамках данных линий Фибоначчи. Здесь мы видим пример построения линий Фибоначчи на еще не закончившемся тренде. На самом деле, когда мы строим линии Фибоначчи, мы ведь еще не можем знать – произошел перелом тренда или это всего лишь временный откат. В этом искусстве выдающихся успехов достигли Антонио Страдивари, Амати, Гварнери, и по сей день звучание их инструментов является образцом, превзойти который не удалось еще никому. Можно предположить, что такое звучание происходит благодаря закону золотого сечения, которое лежит в построение скрипке Антонио Страдивари.
Последовательность Фибоначчм асимптотически (пpиближаясь все медленнее и медленнее) стpемится к некотоpому постоянному соотношению. Однако, это соотношение иppационально, то есть пpедставляет собой число с бесконечной, непредсказуемой последовательностью десятичных цифp в дpобной части. В трактате «Цветок» (Flos, 1225 год) Фибоначчи исследовал кубическое уравнение, предложенное ему Иоанном Палермским на математическом состязании при дворе императора Фридриха II. Сам Иоанн Палермский почти наверняка заимствовал это уравнение из трактата Омара Хайяма «О доказательствах задач алгебры», где оно приводится как пример одного из видов в классификации кубических уравнений.
Цель авторов — сделать стратегии Фибоначчи прибыльными для трейдеров. Искусствоведы дружно утверждают, что на живописном полотне существуют четыре точки повышенного внимания. Располагаются они по углам четырехугольника, и зависят от пропорций подрамника. Считается, что какими бы ни были масштабы и размеры холста, все четыре точки обусловлены золотым сечением. Все четыре точки (их называют зрительными центрами) расположены на расстоянии 3/8 и 5/8 от краев (на рисунках в этой книжке золотые точки выделены оранжевым цветом).
Отметим, что сам Фибоначчи открыл свой знаменитый ряд, размышляя над задачей о количестве кроликов, которые в течении одного года должны родиться от одной пары. У него получилось, что в каждом последующем месяце после второго число пар кроликов в точности следует цифровому ряду, которое ныне носит его имя. Поэтому не случайно, что и сам человек устроен по ряду Фибоначчи. Каждый орган устроен в соответствии с внутренней, или внешней двойственностью.